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Under the assumption of a small magnetic Reynolds number an exact solution 
was obtained In [l] for the problem of nonatatlonary plane-parallel flow of 
an Ionized medium in a trnsverse magnetic field taking Into account the 
effect of Lermor precession of electrons end Ions. On the basis of results 
from [l] for the case of constant pressure drop the temperature distribution 
Is found In this paper over the cross section of e flat channel under condl- 
tlons of constant channel wall temperature. All assumptions adopted In the 
paper [l] are retained. 

1. By virtue of assumptions made In [1] with regard to lncompresslblllty 
of the medium, with regard to constancy of Its degree of Ionization and with 
regard to smallness of the magnetic Reynolds number, energy equations can be 
written In the form [2] 

C,O (1 t- 2s) P cg+uvT)= -ddivq--nPm '~~+j(Eo+uXBo) (1.1) 

where 2' Is the temperature, c,O Is the heat capacity per unit mass of the 
neutral gas, Q Is the vector of heat flux, 
Is given by Equation (2.3) In [23. 

e general expresslonjfor which 
The remaining notation Is the same as In 

[II* 
Assuming from the nature of the problem that T = l'(z,t) and making the 

transltlon, as In [l], to nondlmenslonal variables (by additional lntroduc- 
tlon of p+ as e scale for 5" ), we will have Instead of (1.1) 

8T CYT 
z = C2 yjji- 4- F b, t) (1.2) 

where 

uo2 
r = C=‘T*p, 

(1.3) 

The coe'fflclent 
ber p@) coincides 

of thermal conductivity ,A' which enters Into Prandtl num- 
with the coefficient of heat conductivity for partially 

Ionized gas in the absence of a magnetic field [2]. For sufficiently high 
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degrees of Ionization this coefficient le determined by electrons only (for 
ag: 1 by neutral components). Thus, by virtue of the geametry of the prob- 

and boundary condltlons: 

I.8 

T (z, 0) = To = const, T (Ifr 1, t) == 0 0 > 0) (1.4) 

It ia not difficult to check that the Inhomogeneous part of the equation 
an even function of I . 
Therefore 

T (z, t) = $ Tm (t) cos )i,z 
2n f 1 

(1% = 2 ix (n = 0, 1, 2, 3, . * 4) (1.5) 

Introducing 

F (z, t) = 5 F,z (t) 

+1 

cos l,z F,, (t) = s F (z, t) cos l,z dz 

n=o -1 

and substituting (1.5) and (1.6) into (1.2), we obtain the following 
for determination of Z’.(t) .&r 

dT, 
z + C2h,ZTn= F, cos h, zdz = ‘$(-I)” > 

-1 

The solution of Equation (1.7) will be 

T,, (t) = exp (- Cz&2t) [f Fn (z) exp (O&Q) dz + T+(-IJ~] (1.8) 
0 

From this the de&red general solution takes the form 

(1.6) 

equation 

(1.7g 

T(z, t) = 2 iy (--lln -k f F, (rf exp ~c~X,~T) dz 
J 

exp (- Cghn2t) cos &z (1.9) 
n=o 0 

It remains to construct F(a,$) with the aid of expressions obtained ln 
[I] for complex velocity u (z, t) = ux - iuz, and for current J = jr - ijV and 
to carry out the quadrature6 which enter into (1.9). 

2, In the following we assume for slmpllclty that the differential pressure 
is applied only along the x-axis and that an external electrical field Is 
absent, I.e. [l] 

$0 = PXl Pp = cpo = I$,, - iEov= 0 f2.f) 

Then, after extenslve calculations including integration and summation of 
trigonometric series, the presentation of which does not appear possible 
here, the final solution of the problem 1s written ln the form 

T (z, t) = T,, (2) + T, (4 + T, tz,.t) 

The first two terms give the steady temperature regime and take into 
account viscous friction through T,, and Joule heating through T, . 

(2.2) 

T = _yP@) (Af + A29(rt2 + ~2') cos Zr, - cos 2r,z wsh Zrl --ccsh2rlz 

3 +h? rl cos2 r2 +ti?r, sin 2r2) rz2 
+ 

TX2 
(2.3) 
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We note her"e that taking into account Larmor precession of chargea parti- 
cl.es leads to oscillatory character of steady temperature. 
introduced int;o the.express2~n obtained, 

Ifoa,+gi, is 
then the aperlodio sof&l*n results 

whfch corresponds to the temperature regime of %he Hartmann problem when the 
electrical field Is equal to zero 

The temperature pattern which correapords to the other regime of the Hart- 
mann problem was obtained in [3 to 51 s We wilf write the expression for the 
transition regime 

The constants Wci, W$, WJ$ and WJ$ fiave the form 



1376 1.0. salrhmvskll 

wz $ iW’.2’ I 

(-l)“+$c 
hn (1 + 28) (c*x*a - &2,(l) - iQk’y 

- id&@) + 

+ @kc’) - ifik@‘) (AL - iA2) Ekn - 
I,, ( A1 - i A2) (sidqrl cos r, f icosh(rI sin ra) 

wsh rl co.9 ra + isinhr, sin ra X 

x <[(BP - i&p)) + 
)I 

[2r, (IFi + ZpA) - 

2Ak 
- i (Zg - $‘$I f ~(a) (r2 - irl)(dk (1) _ idk@))[2r, (Z(l) kn - I$) - i (zp; _t (4) \ Zkn)], 

(2.11) 

Wi$ + iW J$ = 
2 (-l)n+‘yxl&& 

(1 f Zs)[C2&* - Q,(l) - Ql(l) - i (Qk@)- Ql(‘))] ’ 

x [@)dl(l) + pk(a)dr(a) + -!- R(a) (dk(‘)dlcl) + dk@)dlca)) (Ah2 + 12’ - ha)] x 

(2.12) 

l%(l) - @kca) = 
2 (A, + iAJ N* 
hk (&a/Mg*2 + 1) [it +$ - j$)] 

&(l) - i&@) = 2 (AI + iAd 1 for k = n 

Ak (hkvMs*2 + 1) ’ 
.$n = 

0 for k # n 
(i = v/-1, (2.13) 

(2.14) $3;4p' = r12 - (hk ‘F da + hna 
[rla + @k + r# + haI2 - 4 Ok T r2)2 h2 

g,(l) zzz N ((1 it m&‘) [l + 2 (1 - s)~ o&@,T~I + rn,0,Z,,Ak2} 
[I + 2 (1 - sja qZiaa,T~]2 + (oezo)2 

&(a) zz 
N {m2Ak2 [I -l- 2 (1 - s)~ o~T~~o,z~] - o,zo (1 + rn,Ak2)) 

11 t 2 (1 - s)2 OiZ@e ToI2 t (O&JP (2.15) 

The obtained expression Is very cumbersome and It ticludes both the aperl- 
odlc and the periodic parts with respect to time. !Che appearance of the lat- 
ter Is due to Larmor precession of chaFged particles. 
O,TO~ 1,we have for cyclic frequencies 

In fact, assuming 

Qk(21 = 0, Qk(2) - q(a) = 0 

Assuming on the other hand o~z~O 4 1 (tOiTia 4 I), we obtaln 

Qk(2) = _ N 
Ot?TO 

1 + (o,zo)a ’ Qk (2) - g,(2) = 0 

(2.161 

(2.17) 

Thus, Larmor precession of Ions leads to perlodlcity of the last sum ln 
(2.10) and ale.0 to a spectrum of frequencies of osclllatlon In contrast to 
the case WiTi 4 1. It is also Interesting to observe the effect of mag- 
netic fle.ld on fhe decay coefficient of the periodic part of the transition 
regime BkC1) 
Px,' 

and ~~(1) + ~~111 (the coefficient of decay of the aperiodic part 

(2.15)s 
does not depend on the magnetic field). 

we obtain for purely hydrodynamic flow 
Assuming the value B,= 0 In 
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!&(l) = Ak2 /R(o) (2.18) 

For the Isotropic magnetohydrodynamic case (O,Z,,< 1)1 

C&(l) = N + &2 / R(O) (2.19) 

I.e. an Increase In the decay coefficient Is observed. 

Consideration of the effect of anlsotropy In conductivity (aeQ Is finite, 
oiz$le 1) gives 

g,(l) = (2.20) 

I.e. for equal parameters of magnetic lnteraclon N we have a decrease In 
Q(l) In comparison with the Isotropic case (generally, N also Increases 
with Increase In the magnetic field, as &,a). 
Larmor precession of Ions (~~7~0 

Finally, consideration of 
and ~17:. are finite quantities) gives 

f&(l) = N %12 
1 + (%%)2 ’ R(O) 11 f */g(6&2] (2.21) 

for completely Ionized medium (8 = 1) and 

(2.22) 

for weakly Ionized medium (s a 1). Comparing (2.21) and (2.20) we see that 
for completely lonlded medium consideration of Larmor precession of Ions 
lowers the coefficient of decay. 
taking Into consideration that 

Finally, comparing (2.22) and (2.20) and 

we have the analogous picture 

m, mass of electron 

mi mass of Ion 

for the weakly Ionized medium also. 
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