EFFECT OF LARMOR PRECESSION OF CHARGED
PARTICLES ON NONSTATIONARY TEMPERATURE
FIELD IN A FLAT CHANNEL

(VLIIANIE LARMOROVSKOGO VRASHOHENIIA ZARIAZHENNYXKH OHASTITS
NA NESTATSIONARNOE TEMPERATURNOE POLE V PLOSKOM XANALE)

PMM Vol.28, M 6, 1964, pp.1143-1146

E.QG.SAKHNOVSKII
(Leningrad)

(Received July 17, 1964)

Under the assumption of a small magnetic Reynolds number an exact solution
was obtained in [1] for the problem of nonstationary plane-parallel flow of
an lonlzed medium in a trnsverse magnetic field taking into account the
effect of Larmor precession of electrons and ions. On the basls of results
from [1] for the case of constant pressure drop the temperature distribution
is found in thils paper over the cross section of a flat channel under condi-
tlons of constant channel wall temperature. All assumptions adopted in the
paper [1] are retained.

1. By virtue of assumptions made in [1] with regard to incompressibility
of the medium, with regard to constancy of its degree of lonization and with
regard to smallness of the magnetic Reynolds number, energy equations can be
written in the form [ 2]

aT . — )
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where I 1s the temperature, ¢,° 1s the heat capacity per unit mass of the
neutral gas, Q 1is the vector of heat flux, a general expression:.for which

is given by Equation (2.3) in [2]. The remaining notatlon is the same as in
(1.

Assuming from the nature of the problem that 7T = 7(z,t) and making the
transition, as in [1], to nondimensional variables (by additional introduc-
tion of T* as a scale for T ), we will have instead of (1.1)

aT o°T
27 =C Ga+ Fz (1.2)
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The coefficlent of thermal conductivity \AT which enters into Prandtl num-
ber p? coilncides with the coeffilclent of heat conductivity for partially
ionized gas in the absence of a magnetic field [2]. For sufficiently high
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degrees of lonlzation this coefflcient is determined by electrons only (for
g € 1 by neutral components). Thus, by virtue of the geometry of the prob-
lem the magnetic field does not affect the temperature field through the
mechanism of thermal conductivity {div q = 3 ,/3% , but the magnetic field
has no effect on heath tranafer in its directlon). However this influence
18 realized through the action of internal heat sources {1.3) connected with
viscous dissipation and Joule heating. The problem reduces to solution of
inhomogeneous equation of thermal conductivity (1.2) for the following initisl
and boundary conditions:

T (z, 0) = Ty = const, T(+1,8=20 (t>0) {1.4)
It is not difficult to check that the inhomogeneous part of the equation
is an even function of 2z .
Therefore oc

2n 41
T )= S Ta@eosis  (an = ‘—n—;_——u (n=10,1,23..)) (15
n=0
Introducing oo +
F (z, )= ZF” () cos Anz (Fn ) = SF’("z, ) €08 Apz a’z) (1.6)
Nz -1

and substituting (1.5) and (1.6) into (1.2), we obtain the following equation
for determination of T,(2)

+1
dT or
T+ OETa= F, (T =7, gcos hy ads = -;:“(*1)“) .7
-1
The solution of Equation {1.7) will be
: o,
To () = exp (— 020 [{ Fu (9 exp @029 ax + 07 19
i)

0
From this the desired general solution takes the form

0 ZTO . |3
Tz, ) = Z N (—OH"+ S F, () exp {22,21) dt} exp {— O %y cos 2z (1.9)
n=p i
It remains to construct F{z,z) with the ald of expressions obtained in
{1) for complex velocity v (3, ) = uy — ity and for current J =, — ij, and
to carry out the quadratures which enter into (1.9).

2, In the following we assume for simplicity that the differential pressure
is applied only along the x-axis and that an external electrical fleld is
absent, i.e. [1]

Py == Py, Py =g, = Epy — iEoy= 0 2.1)

Then, after extensive calculations including integration and summation of
trigonometric series, the presentation of which does not appear possible
here, the final solution of the problem is written in the form

T (z,8) =T, () + Tg(2) + Ty (2,0 (2.2)

The first two terms glve the steady temperature regime and take into
account viscous friction through Tﬂ and Joule heating through Tc .

T =

_me (A2 -+ AR (r + %) (cos 2ry — cos 2ryz + cosh 2py —cash2r;z
k) 8(“,3,{3 ry €082 ry ~beink?r, sin )
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ANP R®PD yREP® (A 1 A2
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Here
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1 1 4 1
my = g + 00 |~ + 2 (1 — 9 o (_.___M,_M)}
27T ap(a2 elo [ FY] ( ita | ar(4)2 M2
2(4 —3)* Pio,T
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. LI 1 Py
A*= RW siohry $in ry = Ri2 “R@ ooy cos ry 4 AFF AF feostiry cos ry (mgdy — mydy) +
’@"’mhfz sin ry (maAy 4 mydy)] 2.8)

P,

1
AR = R ehry €0sTy 4+ oy sinbry sin ry + WWH €os rq (mah, +

{4} RS { 2)

§ mgAg} —-mohyy sin 7y (mady — my AP

We note here that taking into account Larmor precesslon of chargea parti-
cles leads to oselllatory character of steady temperature, If a,7,<<1, 1s
introduced into the .expression obtained, then the saperlodic solu %1on results
which corresponds to the temperature regime of the Hartmann problem when the
electrical fleld is egual to zero

T4T _yRpOp e [ 1 — 22 2fcoshlf @ —wcostipfV7)  comm 270 _compy® ;  (2.9)
n -

202 2 M 20un 310 + 4MO2 2 Mo
The temperabure pattern which corresponds to the other regime of the Hart-

mann problem was obtained in {3 to 5]. We will write the expression for the
transition regime

-] +1 o0
Tylz, 1) = 2[%(-—f}“—~ @, 4 7o) cos a2z — D) Wi~ ZZ <s>]

=0 -1 k==0 Fe==0 1==0

x> XX
X exp (~— CD2) 08 Mz + 2 { 2 (Wi cos Q4 Pt 4 Wi, sin Q% x
n==0 K==l

Xexp (— Q'™ ¢ 4+ }} 2, W, cos (@™ — ) ¢ 4 Wi sin (¥ — @) #]x
Kwag) L)
X exp [— (20 4 QW) ]} cos a2 (2.10)

The constants W, Wi, w,§) and W% nave the form
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W(l) 4 W(2) — (—1)n+1w {{P (dh(l) . idh(a)) +
(A + Zs) €2 — th — 0 (2)) x
() .o (2) . kn (Ay — iA,) Ginhry €OS ry + icoshiry sin ry)
+ B — B ) (8, — i8y) ¥ cosh Fy COS g < isinhry Sin ry x

(1) id. (3] 1 q
X <[(Bkm iB,®) + _.li::zg (3(2) —¢ R(4))j|[2r1 U8+ 12 —

— g — 11+ 2% (,, (ry — ir) (@™ — igy®)i2ry (122—122)—i(12i{+1§%3)1>}
2.11)

2 (=)™ g N
(1 + Z)[Cn2 — @ — QW) — i (Q,P— )]
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X BN ™ + B Py + —gr @ + P ®) (af + W — a2 X

1
X R TR — Dl

(2.12)

. 2 (A + iAy) N* 1 1
Bhu) - lBkm) = iy ()\;2/M8*22+ 1) [1 + Ap? ('ﬁs'*— - ﬁ)

) 2 (A + iAy) 1 for k=n — (2.13)
1y _ @) — 1 2 kn =1V =
dp " — idy wORIME F 1) 0 ¢ {0 for kot =YD

Mt
Tl T )+ REE — 4 (0 T ) A
1(3’4) _ - ()‘k :F rﬁ)z + )Vn,z (214)
kne T 4 e T o) WP — 4 O T ore)® AP

0,0 — N{l4 mn?) (1421 — 9 051350,T] + ma®,To A%}
R 14+ 21 — 9 0;T5,0,T0] + (0Tp)?

1(1 2) —

0,@ _ N imak? (1421 — 5)? 0iTig0eTy] — 0Ty (1 + myde?)}
= [14 21 — 5% 0iT;q0e Tol? + (eTe)?

(2.15)

The obtained expression 1s very cumbersome and it includes both the aperi~
odic and the perlodic parts with respect to time. The appearance of the lat-
ter 1s due to Larmor precession of chatged particles. In fact, assuming
mero< 1, we have for cyclic frequencies

Qh(z) =0, Qk(2) _ Ql(ﬂ) — (2.16)
Assuming on the other hand ;v;0 <€ 1 (0;7;, <€ 1), we obtain
®,T,
@ — o DeTo @ _ 0@ — )
Qh = N 1+ (mero)a ' Qh Ql 0 (2 17)

Thus, Larmor precession of lons leads to perlodickty of the last sum in
(2.10) and glso to a spectrum of frequencies of oscillation in contrast to
the case (.011:10< 1. It 1s also interesting to observe the effect of mag-
netic field on the decay coefficient of the periodic part of the transition
regime Q1 and @, 4 QI (the coefficient of decay of the aperiodic part
¢®1,? does not depend on the magnetic field). Assuming the value By,= O in
(2.15), we obtain for purely hydrodynamic flow
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Q. = ;\kz/R(O) (2.18)
For the isotropic maegnetohydrodynamic case (0,T)<< 1)}
Qh(l) =N+ ;\kz / R(O) (2_19)

1.e. an increase 1in the decay coefficient 1s observed.
Consideration of the effect of anisotropy in conductivity ( ®.T, 1is finite,

0;7;0 << 1) gives 0. _ N Ag?
R = T+ (@eTy)? + RO (2.20)

i.e. for equal parameters of magnetic interacion ¥ we have a decrease in
Q,1) in comparison with the isotropic case (generally, ¥ also increases
wlith increase in the magnetic fileld, as Bo’). Finally, consideration of
Larmor precession of ions (w, 7,8 and w,T,, are finite quantities) gives

N A2
1 4 (0.7,)2 + RO 1T F (077 (2.21)
for completely ionized medium (& = 1) and

N (1 + 20i7;,0,T.4) Ay

4 — 2,22

(1 + 20;T;00,Teq)? 4 (©,T,q)? + RO ( )
for weakly lonized medium (s « 1). Comparing (2.21) and (2.20) we see that
for completely lonlZed medium consideration of Larmor precession of ions

lowers the coefficlent of decay. Finally, comparing (2.22) and (2,20) and
taking into consideration that

Qh(l) =

Qh(lr =

(ﬁ;)’/=<1 <me mass of electron)

0Ty ~ | — ] T
tha m; etea m; m; mass of ion

we have the analogous picture for the weakly ilonized medium also.
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